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Abstract

System identification and control design of an
irrigation channel with a tunnel

Petra Bernhoff

The demand on water is high but the supply of water is low due to the dry and warm
climate in Australia. This is especially difficult for farmers that do not get enough
water delivered in the irrigation channels which has dramatic consequences. A high
percentage of the water lost in the channels can be saved if the systems are managed
better. 

Using system identification techniques to develop a mathematical model which
describes the dynamics in the irrigation system is a helpful tool for control system
design. The model needs to be able to describe the downstream water level of a pool,
containing a tunnel, in a satisfying way.  The model was built using data from
experiments to estimate unknown parameters in a chosen model structure. A
feedforward PI controller with a low pass filter was designed using frequency
response techniques and the results were simulated with varying parameters and
disturbances. 

The result of the modeling was a first order OE grey box model. The model
performed well on validation data and was therefore used in the controller design.
The controller using both feedback and feedforward could in a satisfying way reduce
offtake disturbance, track water level set points and limit the excitation of waves in
the channel, and therefore also reduce the water wastage. 
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Populärvetenskaplig sammanfattning 
 
Efterfrågan på vatten är stor medan tillgången på vatten är låg på grund av det torra och varma 
klimatet i Australien. Detta påverkar speciellt lantbrukare då otillräcklig bevattning av markerna 
kan ha förödande konsekvenser för dem. Vatten levereras ofta på beställning genom stora nätverk 
av bevattningskanaler, men i dessa försvinner en stor andel av vattnet delvis p.g.a. att man inte 
har tagit hänsyn till olinjäriteter i systemet, vilket t.ex. en tunnel utgör. Med modeller som 
beskriver flödet i kanalerna mer noggrant och med regulatorer som baseras på dessa modeller kan 
man minska volymen vatten som idag går förlorad i systemet.  
 
System identifiering kan användas som ett verktyg för att ta fram en matematisk modell som 
beskriver dynamiken i bevattningskanalerna vilket är användbart vid regleringen av systemet. 
Modellen behöver kunna beskriva vattennivån nedströms i en bassäng som innehåller en tunnel 
på ett tillfredsställande sätt. Modellen utvecklades baserat på data från experiment och de okända 
modellparametrarna estimerades i den valda modellstrukturen. En PI-regulator med lågpassfilter 
designades med hjälp av frekvenssvarsteknik och resultatet simulerades med varierande 
parametrar och störningar.  
 
Resultatet av modelleringen är en första ordningens OE grey boxmodell. Denna modell kunde 
beskriva valideringsdata väl och används därför till designen av regulatorn. Regulatorn använder 
både återkoppling och framkoppling och kan minska störningarna från sidokanalerna, följa 
önskad vattennivå och minskar förstärkningen av vågor i kanalen, vilket bidrar till att mindre 
vatten slösas.  
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1 Introduction  
 

1.1 Background 
Due to a sharp rise in water demand in many parts of the world, water is becoming an 
increasingly scarce resource and water management has become a very important issue. Australia 
is a very dry continent that presumably cannot sustain the present exploitation levels of its natural 
water resources. Climate change, population and industrial growth pressures compound the 
problem.  
 
The distribution of fresh water for irrigation in Australia is achieved via an extensive civil 
infrastructure, reservoirs, approximately 15,000 km of channel network and 17,000 channel 
pools1. On a global scale, agricultural irrigation accounts for approximately 70% of all fresh 
water usage.2 It is not always the low supply of water that causes the problem, but the disability 
to fully and efficiently utilize the available quantities3. Large amounts of water, typically 25% in 
the Australian irrigation systems, are wasted due to poor management and control4. The water 
losses are evenly split between the large scale distribution losses and the on-farm losses. The on-
farm losses are to a large extent due to poor timing of irrigation, a consequence of manual water 
scheduling on the side channels leading to the farms, called offtakes. Most of the large scale 
distribution losses are due to natural tendency to oversupply water, meaning that water passes the 
last gate in the irrigation system and since there are few opportunities to recapture water that is 
not used, the water is considered wasted. The channels tend to be operated with relatively large 
volumes of water, oversupplied, in order to avoid the dramatic consequences on the rural sector 
when water is not delivered on time. With better models available, the channels do not have to be 
oversupplies and the losses of water could be reduced.  
 
Australia’s channel infrastructure is 100 years old and consists mainly of open water channels, as 
opposed to closed channels which are covered. Clearly, there are problems with open water 
channels, such as evaporation and seepage, with an estimated loss of 10-15% of supply. This 
could be avoided with closed channels but at present, these losses are insufficient to warrant 
consideration of replacing the current channel infrastructure with closed channels in a piped 
water network, which have other problems such as leaks.5  
 
The water levels can be controlled by installing gates along the channel, which can be opened and 
closed. With an IT infrastructure installed at the gates, data, such as water levels and gate 

                                                 
1 Rubicon Systems 
2 Mareels, Weyer, Ooi, Cantoni, Li, Nair (2005) 
3 Ooi, Weyer (2007) 
4 Cantoni, Weyer, Li, Ooi, Mareels, Ryan (2006) 
5 Mareels, Weyer, Ooi, Cantoni, Li, Nair (2005) 



11 
 

positions, can be communicated from the channels. System identification can then be used to 
exploit the data and find models that accurately describe the flow in the channel. Using control 
techniques, a controller can be designed, which can control the water levels. A controller has the 
potential to improve distribution efficiency and achieve near on-demand water delivery.  
 

1.2 Channel description  
Water runs from reservoirs through a series of open water irrigation channels to the farms. The 
large-scale distribution of water is powered purely by gravity. Most farms also have a gravity fed 
system, which means that the amount of farmland that can be irrigated is directly limited by the 
available water supply (potential energy) at the channel outlet (on-farm supply point). A number 
of gates are positioned along the channel, which work as controllers and restrict the water flow.  
 
The measured variables are the water levels, measured with reference to a standard level, mAHD 
(meter Australia Height Datum) and the gate positions, given in meters. The head over gate, 
denoted by h , is the amount of water above the gate and is calculated as the upstream water level 
minus the gate position p as shown in figure 1.  

 
 
 
 
 
 
 
 
 
 
 

A stretch of channel between two gates is referred to as a pool. The pools are named according to 
the upstream gate. iy  and 1iy +  are the upstream water level of gates i  and 1i + respectively, ip  
and 1ip + are the position of gates i  and 1i + , and ih  and 1ih +  are the head over gates.  

 
Irrigation channels should be managed so that they can deliver water to the farms on demand and 
minimise water wastage. These both objectives are conflicting. Most Australian irrigation 
channels are demand driven. This means that farmers place orders of water in advance, rather 
than the water authority telling the farmers when they can take water6. Based on the orders of all 
farms along a section of a channel the water authority calculates the amount of water to be 
released into a channel from a dam or a reservoir. When the water is in the channel, the water 

                                                 
6 Weyer (2008) 

hi 
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yi 
pi 
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hi+1

pi+1 

yi+1

Figure 1: A section of an irrigation channel 
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levels are controlled and maintained around setpoints, which are determined depending on the 
water levels and the water demands. The water level is controlled by moving the gates and hence 
the water level is the output of the system. The input is the amount of water flowing into the 
channel and this is associated with the position of the gate. It is important to keep the water level 
as close to the setpoints as possible as the offtakes are gravity fed. This means that there is no 
way of pumping the water to feed the offtakes when the change in potential energy is not 
sufficient to feed the offtakes from gravity alone.  
 
A pool can sometimes be several kilometres long and as the water takes some time to travel this 
distance, the system experiences a time delay. The time delay makes the control task harder 
because more water than necessary is released into the channel in order to make sure that the 
water is delivered to the farmers on demand. From a farmers perspective, the quality of the 
irrigation service is determined by the timing of the irrigation water and, since the on-farm 
irrigation is gravity fed, also by the water level at the on-farm inlet.  
 

1.3 Aim 
The aim of this project is to further improve the performance and thereby the efficiency of an 
irrigation system. More specific, this is done by controlling a part of the channel containing a 
tunnel. I intend to use system identification methods to find a model that predicts the water level 
in a satisfying manner and then with the help of controlling techniques design a controller that 
can regulate the flow.  
 

1.4 Outline of the report 
The thesis consists of 6 chapters, the contents of which is organised as follows. The first chapter 
gives an introduction to the subject of irrigation channels and the problem with water loss in 
irrigation channels that we are facing today. The second chapter provides the theory for system 
identification. First, some modelling techniques are introduced and then the system identification 
process, including experiment design and performance, model structure selection, parameter 
estimation and model validation, is described. Chapter three gives the basis of control theory 
considering the advantages of different controllers and how their parameters can be found. Some 
control related topics such as frequency response, stability and robustness of control systems are 
also discussed.  In chapter four the modelling of the irrigation channel starts. In order to 
understand the complex dynamics in the system, the part of the irrigation channel considered in 
this report is introduced with its physical parameters. Thereafter, the modelling based on physical 
relations and system identification begins. A model structure is chosen, and a model and its 
predictor are found. Experiments are performed and analysed and the unknown parameters are 
estimated. Finally the models are validated. Chapter five involves the design of the controller 
starting with stating the objectives of the controller. Then the design process, using both feedback 
and feedforward controller, is described. Simulation results are provided to support the analysis 
and illustrate achievable performance. In the final chapter the main results of the thesis are 
outlined.  
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2 System identification theory 
The use of system identification models for control has two obvious advantages. The models are 
simple discrete time difference equations and easy to use for control design, and since they are 
built from observed data, they often give an accurate description of the relevant dynamic.7  
 

2.1 Modelling techniques 
Constructing a model of a system is a good way of learning about the qualities of the system 
without having to perform experiments on it. A mathematical model is a description of the 
system where the relations between the model variables and the signals are expressed as 
mathematical relations. The laws of nature are examples of mathematical models, but also they 
are idealised and simplified systems. For real systems, the relations between the variables can be 
very complicated. Using a simplified model of a system, the qualities and behaviour of the 
system can be studied either analytically or with numerical experiments through simulations. The 
value of the results are however dependent on the quality of the model.8 
 

2.1.1 Physical modelling 
Using all the physical insights about the behaviour of a process to form a model containing both 
known and unknown parameters is called physical modelling. The principle of physical 
modelling is to use known relations to describe the systems. In many systems physical laws can 
be used to describe the system dynamics whereas in some systems hypotheses may also have to 
be used.  
 

2.1.2 System identification methods 
The other approach uses operational data, which is measurements of the behaviour of the system 
and the external influences, to try to determine a mathematical relation between them. This 
approach is called system identification and requires less physical a priori information of the 
system. The system identification method is often used as a complement to physical modelling.9 
Two types of modelling techniques are common in the field of system identification; black box 
modelling and grey box modelling.  
 
Black boxes are a family of (usually linear) models, whose parameters do not have physical 
significance but where the objective is to find a good linear system that fits the observed data. 
The advantage of black box modelling is that the demand on information about the system is 
small. Only the relation between the input and the output is described, without taking any notice 

                                                 
7 Weyer (2008) 
8 Glad, Ljung (2004) 
9 Glad, Ljung (2004)  
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of what happens inside the system. The description of the system can be a number of 
mathematical equations or a graph showing the relationships between input and output.  
 
Between the two extremes on the design scale of a model structure there is a middle zone where 
considerable and important physical insight is used in the identification process, but not to the 
extent that a formal physically parameterized model is constructed. This is called Grey box 
modelling or semi-physical modelling and is used for partially known systems. This is the 
process of taking physical insight known about the behaviour of the system into account and use 
the insight to find adequate nonlinear transformations of the raw measurements so that the new 
variables stand a better chance to describe the true system when they are subjected to standard 
model structures. A grey box model should explicitly utilise the a priori knowledge such as the 
physical laws.10 
 

2.2 Procedure of system identification 
The system identification procedure usually goes through four different phases, as shown in 
figure 2, which can be considered as the method of using system identification. First of all the 
experiment needs to be planned so that as much information as possible will be collected and 
then the experiment can be performed. Using the information about the system the model 
structure is selected and the unknown parameters need to be estimated. When this has been done, 
the model needs to be validated. In this phase, one might find that the model is not good enough, 
if this is the case one or more of the prior phases need to be repeated in order to arrive at a 
satisfying model.  

Experiment –
design and 
performance

Model
structure
selection

Parameter 
estimation

Model
validation

 
Figure 2: The system identification procedure 

 
 
 

                                                 
10 Lindskog, Ljung (1995) 
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2.2.1 Experiment design 
The first step in the building of a model is to decide what quantities and variables that are 
important to describe the dynamics in the system. Simple experiments and observations of the 
true system are the main sources of information.  
 
A common experiment in this phase of the model building is a step response analysis, also called 
a transient analysis. The input is changed from one constant value to another, as a step, and the 
other measurable variables are observed. A step response can give information about what 
variables that are affected by the input, time delays, time constants and the character of the step 
response, information which can be useful when studying the behaviour of the final model. The 
time delay can be found as the time difference from when the step is performed in the input until 
the effect of the step can be observed in the output. The time constant τ  represents the time it 
takes for the system’s step response to reach approximately 63% of its final asymptotic value. 
The time constant can change with flow conditions and when the experiment time is fairly long, 
one can also calculate the time constant with the so called 5τ -method. This method estimates the 
time constant as the time it takes for the system to reach steady state divided by five.  
 
The experiment should be designed in such a way that it is as informative as possible since the 
more data that is collected during the experiment and the more variation in the data, the better 
model can be obtained.  
 

2.2.2 Model structure selection 
The second step in the system identification procedure is to obtain a useful model structure, 
which describes the dynamic relationships between the input signals and the output signals. 
Based on physical considerations a few equations can usually be obtained which are believed to 
pick up the essential features of the system in question. Most physical laws are continuous time 
differential equations and it is therefore natural to build a continuous time model. Instead of 
making experiments on the real system, they can be made on a model of the system. If the model 
will be used to design a controller, one has to take into account that if the controller is 
implemented on a computer, it works in discrete time which means that the continuous model 
needs to be sampled. The model will then only give information about the system at the sampling 
instances. It is therefore practical to use a discrete time differential equation model11. A general 
linear, time discrete model can be written as  
 

( ) ( ) ( )y t t w tη= +           (1) 

 
( )y t is the output, ( )w t represents the disturbance and ( )tη is the disturbance free output, which 

can be written as  

                                                 
11 Glad, Ljung (2004) 
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( ) ( , ) ( )t G q u tη θ=           (2) 

 
where ( )u t is the input and ( , )G q θ is a rational function of the shift operator q , also written as 

 
1 1

1 2
1

1

...( )( , )
( ) 1 ...

nk nk nk nb
nb

nf
nf

b q b q b qB qG q
F q f q f q

θ
− − − − − +

− −

+ + +
= =

+ + +
     (3) 

 
which gives the relationship 
 

1 1( ) ( 1) ... ( ) ( ) ... ( ( 1))nf nbt f t f t nf b u t nk b t nb nkη η η+ − + + − = − + + − + −    (4) 

 
This is a differential equation with a time delay of nk  samples. The disturbance ( )w t can be 
written in the same way as 
 

( ) ( , ) ( )w t H q e tθ=           (5) 

 
where ( )e t is white noise and ( , )H q θ is a rational function of the shift operator q  

 
1

1
1

1

1 ...( )( , )
( ) 1 ...

nc
nc

nd
nd

c q c qC qH q
D q d q d q

θ
− −

− −

+ + +
= =

+ + +        
(6)

 
 
By using the transfer functions defined above, the model given in equation (1) can be rewritten as 
 

( ) ( , ) ( ) ( , ) ( )y t G q u t H q e tθ θ= +         (7) 

 
The parameter vector θ  contains the coefficients ib , ic , id  and if  from the transfer functions. 
nb and nf  and nc and nd are the orders of the numerator and denominator respectively of 

( , )G q θ  and ( , )H q θ .  

 
A very common model structure is the Auto Regressive with External Input (ARX) model which 
is given by 
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( ) ( ) ( ) ( ) ( )A q y t B q u t e t= +          (8) 

 
Figure 3 shows that the disturbance comes in early in the process in the ARX model structure.  

B 1/A+

u
e

y

 
 

Figure 3: Block diagram of an ARX model structure 

 
The ARX model is associated with the following predictor which uses old values of the output 
for the predicted output value ˆ( , )y t θ . 

 

1 1ˆ( , ) ( 1) ( ) ( ) ( 1)na nby t a y t a y t na b u t nk b u t nk nbθ = − − − − + − + − − +     (9) 

 
Another common model structure is the Output error (OE) model 
 

( ) ( , ) ( ) ( )y t G q u t e tθ= +          (10) 

 
In the OE model structure, as can be understood by its name, the noise comes in late in the 
process and only affects the output, which is shown in figure 4. No parameters are used for 
modelling the disturbance characteristics, hence ( , )H q θ =1.12 

B/F +

u
e

y

 
 

Figure 4: Block diagram of an OE model structure 

 
The OE model is associated with the predictor  
 

                                                 
12 Glad, Ljung (2004)  
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1 1ˆ ˆ ˆ( , ) ( 1) ( ) ( ) ( 1)nf nby t f y t f y t na b u t nk b u t nk nbθ = − − − − + − + − − +     (11) 

 
where ŷ represents the predicted output value. The OE predictor uses the previously predicted 
output at time t  to predict the output at time 1t + , as opposed to the ARX predictor which uses 
the measured output at t  to predict the output at 1t + .  
 
From a system identification point of view the most important aspect of choosing the model 
structure is to make sure that it can be used to define predictors. How well and for how long a 
model can predict future values is crucial when choosing the model structure. 13  The main 
differences between an ARX model structure and an OE model structure are that they model the 
noise differently and they represent different dynamics well. From linear theory it is known that 
an OE model gives a good description of the low frequency properties, whereas an ARX model 
gives a better description of the high frequency properties14. 
 
Once the model structure has been chosen the model order has to be determined. A too low 
model order will not be able to describe the true dynamics of the system whereas a too high 
model order will adapt to the noise in the system. The choice of the model order can not always 
be made a priori, but have to be made along the way. The choices are also highly dependent on 
the future use of the model.  
 
All models include simplifications of the real dynamics. A model is simplified because there is 
not enough information about the system, but even if there was, it would not be appropriate to try 
to model everything. There has to be approximations in the model for it to be easy enough to use. 
There will be a balance between complexity of the model and the accuracy of its predictions. This 
decision is made depending on what the model is used for. The model selection and the model 
order should be based on the principle, try simple things first, which means that only if simple 
models such as ARX and OE are not good enough, more complex models should be tested.  
 

2.2.3 Parameter estimation 
Some constants, called design parameters, can vary in the simulations and therefore be hard to 
evaluate. In order to predict future values of the output, estimations of the unknown parameter 
values in the model are needed. They can be estimated using the following model structure  
 

ˆ( ) ( )Ty t tϕ θ=           (12) 

 

                                                 
13 Eurén, Weyer (2006) 
14 Glad, Ljung (2000) 
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where ˆ( )y t is the output of the model, ( )tϕ is an n-dimensional column vector of the known 
variables, old inputs and outputs, and θ  is an n-dimensional column vector which contains all the 
unknown parameters. 
 

( 1)
     

( )
( )

( 1)
     
( ) 

y t

y t na
t

u t

u t nb

ϕ

− −⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− −

= ⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

    

1

1

na

nb

a

a
b

b

θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦      (13)

 

 
The aim is to find the unknown parameter vector θ . This can be done by “fitting” the model to 
the data so that the error,  
 

ˆ( , ) ( ) ( , )t y t y tε θ θ= −           (14) 

 
becomes small. The model should hence give a good prediction of the measured data. This can be 
done with a common parameter estimation method called least squares method. Assuming that a 
data set from a system has been collected, this method finds estimates of the parameters by 
minimising the loss function ( )V θ , which is a function of the squared prediction errors.  

 

2 2

1 1

ˆ( ) ( ( ) ( )) ( ( ) ( ) )
N N

T

t t
V y t y t y t tθ ϕ θ

= =

= − = −∑ ∑       (15) 

 
N  is the number of measurements used in the estimation. ( )y t is the measured output and ˆ( )y t is 
the predicted output. It is common to write the loss function in normalised form as 
 

2

1

1 ˆ( ) ( ( ) ( ))
N

t
V y t y t

N
θ

=

= −∑
         

(16)
 

 
which gives the minimizing θ . The θ  vector can in some cases be found with an analytical 
solution. In more complicated cases an iterative search algorithm is needed in order to find an 
estimate. For every step in the search for θ , the prediction of the estimation set is calculated. The 
function of the squared prediction error, ( )V θ , is calculated and compared with the previous 

( )V θ . The iterative search stops when a minimum has been found, but it is unknown whether this 
is a global or a local minimum. If the minimum is local it will not give the best model within the 
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particular model structure. This part of system identification can be very time consuming since 
many different starting values have to be tested to make sure that the minimum found is good 
enough.  
 
The least square estimate is defined as 
 

1
1

1 1

1 1ˆ ( ) ( ) ( ) ( )
N N

T
N N

t t

R f t t t y t
N N

θ θ ϕ ϕ ϕ
−

−

= =

⎡ ⎤ ⎡ ⎤
= = = ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑      (17) 

 

Assuming that the matrix NR  is invertible, this equation finds the θ  that minimizes ( )V θ . 

 

2.2.4 Model validation  
Once the parameters have been estimated and the model has been constructed it needs to be 
validated. This is done to confirm that the estimated model meets the specifications required. The 
loss function does not give a true judgement of how well the model can describe the system, but 
gives a very good judgement of how well it can model the estimation set. The model may 
however have an overfit, meaning that it tries to describe the noise. The purpose of the validation 
is to find out if the model is valid for other empirical data sets than the estimation set. An 
accurate model will closely match the verification data even though this data set was not used to 
find the model’s parameters. This practise is referred to as cross validation. The basic idea is that 
the available data is split into two sets, one estimation set and one validation set. The parameters 
are estimated using the estimation set and their performance is then controlled using the 
validation set. A good model should give similar performance from the estimation and validation 
set, which indicates that there is no overfit.  
 
It is hard to say what a “good” model is. The demands for performance and quality on the model 
differ depending on the intended use of the model. Overall, a good model needs to be able to 
imitate a dynamic system closely and give good predictions of the observed data. A model needs 
to have robustness so that the simplified model gives good results even though the model does 
not match with the true system. The term stability robustness is used meaning that the stability in 
the closed system is not jeopardised although some modelling errors may be present.  
 
The mismatch between the true plant and the model consists of two components, bias error and 
variance error. The variance error comes from the fact that noise cannot be reproduced and 
therefore two exact same performed experiments will not give the same output. The variance 
error can usually be reduced by performing longer experiments with more measurement data. 
Bias error arises when the wrong model structure is used. If there are unmodelled dynamics the 
model is simply not capable of describing the system. Thus, if the model does not live up to the 
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expectations the model construction procedure needs to be repeated. This is usually the case 
before a satisfactory model is obtained.15 
 

                                                 
15 Glad, Ljung (2004) 
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3 Control theory  
 

3.1 Open loop vs. closed loop system 
A system can be operated in either open loop or closed loop. In open loop, as shown in figure 5, 
there is no feedback mechanism from the output to the input. With other words, there is no 
correction for the error between the desired output and the observed output.  
 

Controller System
yr u

 
 

Figure 5: Block diagram of an open loop system 

 
In closed loop, as shown in figure 6, the deviation between observed output y  and the desired 
output r  , called the error e  is fed back into the system as the input to the controller. The 
controller can transform the input information to a value of the output of the controller u . If there 
are no model errors and no disturbances, there are no reasons to use feedback in a closed loop 
system.  
 

Controller System
ye u

r

+
‐

 
 

Figure 6: Block diagram of a closed loop system 

 
The goal with a control system is for it to work in the real environment. The real environment 
may change with time, due to varying conditions, and the control system must be able to 
withstand these variations. Therefore, the particular property a control system must possess to 
operate properly in realistic situations is called robustness. Mathematically this means that the 
controller must perform satisfactorily not just for one plant, but for a family of plants.16 
 

                                                 
16 Stefani, Shahian, Savant, Hostetter (2002) 
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A feedback system must also possess reduced sensitivity and disturbance rejection. By sensitivity 
it is meant that using feedback the sensitivity of the closed loop system is reduced. Disturbance 
rejection refers to the fact that feedback can eliminate or reduce the effects of unwanted 
disturbances occurring within the feedback loop.17 
 

3.2 PID controller 
In order to design a controller the objective of the controller first has to be determined. A 
controller can be designed in many different ways to control the overall system behaviour. The 
most common controller is the PID controller, using proportional control (P), integral control (I) 
and derivative control (D). A PI controller is described by two parameters, the proportional gain 
( PK ) and the integral gain ( IK ). An increase in the proportional gain will have the effect of 
reducing the rise time and will reduce, but never eliminate, the steady-state error. The integral 
gain will have the effect of eliminating the steady-state error, but it may make the transient 
response worse. Adding a derivative gain ( DK ) will increasing the stability of the system, 
reducing the overshoot, and improving the transient response. PK , IK and DK  are dependent of 
each other and changing one of these variables can change the effect of the other two.  
 
The transfer function of a PID controller in continuous time looks like the following 
 

2
I D P I

P D
K K s K s KK K s
s s

+ +
+ + =        (18) 

 
Referring to figure 6, the PID controller would work as follows. The error signal ( e ) will be sent 
to the PID controller which computes both the derivative and the integral of the error signal. The 
signal (u ) just past the controller is now equal to the proportional gain ( PK ) times the magnitude 
of the error plus the integral gain ( IK ) times the integral of the error plus the derivative gain 
( DK ) times the derivative of the error. This signal (u ) will be sent to the system, and the new 
output ( y ) will be obtained and sent back to the sensor again to find the new error signal. This 
process goes on and on.  
 
When designing a controller, one usually starts with a proportional controller and then adds an 
integral, and derivative part if needed. There are other compensators that can be used in the 
controller as well, i.e. lead and lag compensation, or high and low pass filters. A low pass filter 
passes the low frequency components in the signals but attenuates (reduces the amplitude of) 
signals with frequencies higher than the cutoff frequency.   
 
                                                 
17 ibid 
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3.2.1 Frequency response 
The frequency response is a representation of the system’s response to sinusoidal inputs at 
varying frequencies. The frequency response is defined as the magnitude and phase differences 
between the input and the output sinusoids. The open loop frequency response of a system can be 
used to predict its behaviour in closed loop. One advantage of the frequency domain analysis 
compared to a step response analysis is that it considers a broader class of signals (sinusoids of 
any frequency). This makes it easier to characterise feedback properties, and in particular system 
behaviour in the crossover (bandwidth) region.18 Below some of the important frequency domain 
measures used to assess performance are defined and described.  
 

Stability margins are measures of how close a stable closed loop system is to instability. Two 
commonly used quantities that measure the stability margin for control systems are gain margin 
and phase margin. These provide stability margins for gain and delay uncertainty. The gain 
margin is defined as the change in open loop gain required to make the system unstable. Systems 
with greater gain margins can withstand greater changes in system parameters before becoming 
unstable in closed loop. The phase margin is defined as the change in open loop phase required to 
make a closed loop system unstable. Again, the greater the phase margin, the greater changes the 
system can withstand. 
 
The concept of bandwidth is very important when understanding the benefits and trade-offs 
involved when applying feedback control. The bandwidth is defined as the frequency at which 
the closed loop magnitude response is equal to -3 dB. It relates to the speed of the response and 
hence the system performance, in general. With a small bandwidth the time response will 
generally be slow, and the system will usually be more robust. Also here there is a trade off 
between the speed of the response and the robustness of the system. It is important to note that by 
decreasing the value of cw  (lowering the closed loop bandwidth, resulting in a slower response) 
the system can tolerate larger time delay errors.19  
 

3.2.2 Anti windup compensation  
All actuators have physical limitations. A gate cannot be more than fully open or fully closed and 
hence, the mechanical range of the actuators is limited. When this happens the feedback loop is 
effectively broken because the actuator will remain at its limit independently of the process 
output.20 This can cause the behaviour of the system to deteriorate dramatically, or even become 
unstable21. If a controller with integral action is used, the error between the linear output and the 
actuator limit will continue to be integrated, the integrator output will grow, “wind up”, until the 
sign of the error changes and the integration turns around. The net effect is a large overshoot, as 
the output must grow to produce the necessary unwinding error, and poor transient response is 
                                                 
18 Skogestad, Postlethwaite (2005) 
19 Chaudhry (1993) 
20 Åström, Hägglund (1988) 
21 Skogestad, Postlethwaite (2005) 
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the result.22 However, there is a way to avoid integral windup, by using an extra feedback path 
shown in figure 7. This measures the actual actuator output and forms an error signal ( e ) as the 
difference between the output of the controller ( u ) and the actuator output ( v ). When the 
actuator saturates, the feedback signal ( e ) is fed to the integrator through a gain tT  and attempts 
to drive the error to zero. As soon as the actuator saturates, the feedback loop around the 
integrator becomes active and acts to keep the input to the integrator small.23  

 

Figure 7: Block diagram of anti-windup compensation 

 

The time constant tT  is called tracking constant and determines how quickly the controller output 
is reset. It should be chosen to be large enough so that the anti-windup circuit keeps the input to 
the integrator small under all error conditions. A common selection of tT  is the same value as the 
integral time. 24 
 

3.3 Feedforward controller 
Combining feedforward with feedback control can significantly improve performance over 
simple feedback control if there are measurements from the disturbance available. Feedforward 
control is often used along with feedback control because a feedback control system is required to 
track setpoint changes and to suppress unmeasured disturbances, which are always present in a 
real process. Even when there are modelling errors present, feedforward control can often reduce 
the effect of the measured disturbance on the output better than that achievable by feedback 
control alone. As seen in figure 8, the disturbance is fed into the feedforward , ( ffK ) which can 
reduce the effect it has on the system ( S ). The decision to use feedforward control is however 
dependent on the degree of improvement achieved with feedforward in comparison with only 
feedback and if it justifies the added costs of implementation and maintenance. 

                                                 
22 Åström, Hägglund (1988) 
23 Franklin, Powell, Emanmi-Naeini (2006) 
24 Åström, Hägglund (1988) 
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Figure 8: Block diagram of a combined feedback-feedforward control structure 
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4 Modelling of irrigation channels 
This chapter describes the system identification procedure applied on a specific section of an 
irrigation channel. The results presented in this chapter are discussed straight away as this is 
easier to follow.  
 

4.1 Introduction 
The system identification is performed on a specific part of the irrigation channel containing a 
tunnel, two gates, 877A and 919, and an offtake to a farm, 880, illustrated in figure 9. 
 

 
 

Figure 9: Section of channel including gates 877A, 880, 919 and tunnel 

 
The water flows from gate 877A through the Boisdale tunnel and then out either over gate 919 or 
through offtake 880. From gate 877A to the inlet of the tunnel, there is a pool 250m long. The 
tunnel is 800m long and after the tunnel outlet another pool, 800m long before the water is let out 
through gate 919. 700 m before gate 919 and just 100 m after the tunnel outlet is another gate, 
880 which leads off water to farms and is called an offtake, see figure 10.  
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Figure 10: Picture of the offtake at gate 880 

 
Approximately 3950m upstream from gate 877A is gate 877 positioned. Before gate 877A was 
implemented, the pool before the tunnel was over 4000m.  
 
The water levels are measured immediately upstream and downstream of each gate. All gates 
considered in this report are overshot and automatically controlled. The gates can operate in the 
free flow regime (figure 11) when the water level downstream of the gate is lower than the gate 
position, or submerged flow (figure 12), where the gate position is below the downstream water 
level and when this occurs, the flow properties changes.25 
 
 
 
 

                                                 
25 Eurén, Weyer (2006) 
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Figure 11: Free flow over gate    Figure 12: Submerged flow over gate 

 
As can be seen in figure 13, there can be more gates operating at each site, in which case they 
operate in parallel, and the gates should always have the same position. 
 

 
Figure 13: Picture of gates at 877A powered by solar panels 

 
Table 1 presents information about the gates, how many there are at each site, the width of each 
gate and the summed width of all gates at each site.  
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Table 1: Information about the gates 

Gate Number of gates Width per gate (m) Width per regulator structure (m)

877A 3 1.372 4.116 

880 1 1.56 1.56 

919 2 1.37 2.74 
 

A gate cannot be more than fully opened or fully closed, hence, the mechanical ranges of the 
gates are limited. In the case of gate 877A the mechanical range is 8.256 - 9.561 mAHD. A gate 
can easily get stuck in the extremes of the mechanical range and the controller, which is software, 
is therefore operated within a safety range in order to avoid the gates getting stuck. The controller 
range for the gate 877A is 8.27 - 9.3 mAHD.  
 
As channels are located in rural areas, solar panels supply the electric power needed to move the 
gates and data communication takes places via a radio network. The required communication for 
control purposes is kept to a minimum by using decentralized control structure where a peer-to-
peer session between the gates can pass the required information, such as the water demand, to 
the nearest upstream regulator. At each gate, all data are monitored on a regularly sampled basis.  
 

4.1.1 Tunnel 
A channel transition is a local change in the channel geometry, which changes the flow from one 
state to another. Typical examples of channel transitions are contractions, expansions and bends. 
The inlet to the Boisdale tunnel, as can be observed in figure 14, is a channel contraction, which 
comprises a reduction in the channel width. Such a contraction may choke the flow if the channel 
width is reduced too much, since the energy may not be sufficient to pass the required amount of 
discharge per unit width.26  
 

                                                 
26 Chaudhry (1993) 
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Figure 14: Picture of the Boisdale tunnel inlet 

 
A tunnel provides the channel with a possible non-linearity. Several different flow conditions 
may occur in a tunnel and these conditions depend on several parameters. A channel section at 
which there is a unique relationship between the depth and discharge is referred to as control. The 
control may be at the upstream end, called inlet control, where the flow mainly depends on the 
inlet conditions, e.g. area, shape and configuration at the inlet, or controlled at the downstream 
end, called outlet control. The tunnel may flow full or partially full throughout its length. The 
inlet and outlet may be submerged, partially submerged or unsubmerged. Hence, the computation 
of flow conditions through a tunnel can be somewhat complex.27 From the pictures it can be seen 
that neither the inlet (figure 14) nor the outlet (figure 15) seem to be in submerged flow, meaning 
that the inlet/outlet is below the water level.  

                                                 
27 Chaudhry (1993) 
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Figure 15: Picture of the Boisdale tunnel outlet 

 
Previous work has shown that a section in an irrigation channel between two gates can be 
modelled with a first order non-linear equation. It has also been shown that when a pool contains 
a tunnel, the pool may have to be split up into two parts, before and after the tunnel and modelled 
separately. Therefore, the tunnel may change the dynamics of the channel and a higher order non-
linear equation may need to be considered.28  
 

4.2 Modelling based on physical relations and system identification 
Previous research has shown that models built from physical data such as the length, height, cross 
section area and side slope of the channel closely describes the relevant dynamics in the 
channel.29 This information is used together with system identification methods to find a model 
that accurately describes the flow in the channel. As the system is partially known, a grey box 
modelling technique is appropriate to use.  
 

4.2.1 St Venants Equations 
A model that closely describes the dynamics of the irrigation channel can be obtained using two 
of the basic laws of physics, the conservation of mass and momentum. These two laws are used 
in the St Venant equations, which are nonlinear partial differential equations and represent a mass 

                                                 
28 Ooi (2006) 
29 Weyer (2001) 
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and momentum balance along the length of each pool.30 The first of the St Venant equations (11) 
is the continuity equation 
 

0,A Q
t x

∂ ∂
+ =

∂ ∂
           (19) 

   
and the second one is the momentum equation  
 

( )² 2 0
²

f
Q gA Q A Q Q gA S S
t B A x A x

∂ ∂ ∂⎛ ⎞+ − + + − =⎜ ⎟∂ ∂ ∂⎝ ⎠
      (20) 

 
where A  is the cross sectional area of the channel, B  is the width of the water surface, g = 
9.81m/s2 is the gravity, S  is the bottom slope, fS  is the slope friction, t  is the time, Q  is the 
flow (discharge) and x  is the distance along the channel.  
 
Comparisons of the St. Venant equations against measured data have shown that they are capable 
of capturing the relevant dynamics of an irrigation channel for control purposes31. However, 
within the context of control design for setpoint tracking and load disturbance rejection, the value 
of a St Venant equation based model is limited because of its complexity, from both the 
perspective of system identification and closed loop analysis32. In the case when there is no 
operational data available or when the data fail to provide sufficient information about the system 
the St Venant equations can be used to obtain models of irrigation channels using a mix of both 
physical modelling and system identification techniques. This way, the first data set is obtained 
using the St Venant equations and then a simple mathematical model is estimated using system 
identification techniques based on the simulated data.33   
 

4.3 Model structure selection 
Two model structures were introduced in the system identification chapter, the ARX model 
structure, and the OE model structure. In the case of modelling an irrigation channel reach, which 
has the interesting dynamics for control purposes, in the low to medium frequency area (changes 
due to dynamic properties are slow), the OE model is more appropriate since it gives a better 

                                                 
30 Ooi, Weyer (2003) 
31 Ooi, Weyer (2007) 
32 Li (2006) 
33 Ooi (2003) 
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description of the relevant frequency properties.34 Previous research has also shown that OE 
models can accurately describe the flow in irrigation channels35.  
 
The hypothesis is that due to the Boisdale tunnel a first order model will not be able to describe 
the flow accurately and therefore higher order models need to be tested. However, since it is 
advisable to try simple models first, the working process started with developing a first order 
model which was tested and thereafter also second and third order models were compared to the 
first order model to see if the achieved results were better.  
 

4.4 Derivation of model structure for system identification 
Previous work has resulted in several different model structures for an irrigation channel. The 
models are derived, from St Venant equation, by considering a simplified mass balance, which 
describe the relevant dynamics well.36  
 

( ) ( )in out
V Q t Q t
t

∂
= −

∂          
(21)

 
 
In words, this equation says that the change in volume (V ) in a pool is equal to the flow into the 
pool ( ( )inQ t ) minus the flow out ( ( )outQ t ). A common approximation37 of the flow over an 
overshot gate is 
 

3/ 2( ) ( )Q t ch t=           (22) 

 
where Q  (m3/s) is the flow, h (m) is the head over the gate and c (m2/3/s) is a proportionality 
constant which incorporates the geometric dimensions of the gate and the discharge coefficient 
and is in this case an unknown parameter.  
 
A model of each pool can be identified using locally measured information. Assuming that the 
volume of water in a pool is proportional to the downstream water level, the following model for 
pool i  is obtained 
 

3/ 2 3/ 2
1 1( ) ( ) ( ) ( )i in i out i iy t c h t c h t d tτ+ += − − −        (23) 

                                                 
34 Ljung (1999) 
35 Weyer (2001) 
36 ibid 
37 Weyer (2001) 
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The equation means that the change in water level y  depends on the flow into the channel 

3/ 2
in ic h minus the flow out 3/ 2

1out ic h +  and disturbances id . τ  represents the time delay associated 
with the time it takes for the water to travel the length of the pool and ( )id t  models water offtake 
disturbances to farms and side channels and is the total water offtake from pool i including 
evaporation and seepage. In the case when the offtakes are not measurable or if they take very 
little water, they are included in the disturbance and are not used in the model. The offtakes 
should however be incorporated in the model if there are available measurements. Assuming that 
there is an offtake in the pool, which can be measured, equation (23) can be rewritten as 
 

3/ 2 3/ 2 3/ 2
1 1 2 1( ) ( ) ( ) ( )i in i offtake offtake out iy t c h t c h t c h tτ τ+ += − − − −      (24) 

 
Another relationship that needs to be used in the model is that head over gate equals the upstream 
water level minus the gate position, i i ih y p= − . Using this, the following first order model 
structure is obtained  
 

3/ 2 3/ 2 3/ 2
1 1 2 1 1( ) ( ) ( ) ( ( ) ( ))i in i offtake offtake out i iy t c h t c h t c y t p tτ τ+ + += − − − − −     (25) 

 
When modelling water flow in a channel it is extremely important to base the model on 
appropriate flow conditions 38 . As mentioned before, the gates can operate in free flow or 
submerged flow. In both data sets used, the gate position was below the downstream water level, 
which indicates submerged flow (figure 12). Since the flow conditions change in submerged 
flow, a correction factor needs to be added to the flow equation (14). The following factor39 
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u

h t
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⎛ ⎞⎛ ⎞
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is used to obtain  
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38 Cunge, Holly, Verwey (1980) 
39 Eurén, Weyer (2006) 
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where Q  is the flow, uh  is the upstream head over gate and dh  is the downstream head over gate. 
Note that gates with submerged flow require more information (the immediate downstream water 
level) than gates in free flow. Equation (18) is equal to the regular discharge equation (14) when 

dh  = 0, and to simplify the presentation dh  and uh  are redefined to 
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such that equation (18) can be used only. For simplicity h  is sometimes used without subscript 
which means that the upstream head over gate is referred to.  
 
Adding the correction factor for the submerged flow equation (25) becomes 
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4.5 Predictors 
As stated above, the OE model gives a better description of the irrigation channels. Using an 
Euler approximation for the derivative 
 

 ( ) ( 1)( ) y t y ty t
T
− −

=
         

(29)
 

and a samplings interval T of 1 min the first order OE predictor can be derived from equation 
(28). 
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As can be seen in the OE predictor, the predicted water level 1ˆ ( )iy t+ at time t is used to predict the 
water level at time 1t +  and since the upstream head over gate is calculated from the predicted 
water level 1,

ˆ ( )i uh t+ is also predicted.  

 
In order to obtain a second order model the simple mass balance presented in equation (21) is 
extended to 
 

( ) ( ) ( ) ( )in outy t ay t Q t Q t+ = −         (31) 

 
Using an Euler approximation for the second derivative is 

 

    
y(t+1)-2y(t)+y(t-1)y(t)=

T
         (32) 

The left hand side of equation (32) can be rewritten as 
 

( ) ( ) ( 1) 2 ( ) ( 1) ( ) ( 1)y t ay t y t y t y t ay t ay t+ = + − + − − − −      (33) 

 
and using the flow equations  
 

3/ 2
1( ) ( )in in iQ t c h t τ= −          (34) 

 
and  
 

3/ 2 3/ 2
2 1 1( ) ( ) ( ( ) ( ))out offtake offtake out i iQ t c h t c y t p tτ + += − + −      (35) 

 
the following model is derived 
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3/ 2 3/ 2
1 1 1

3/ 2 3/ 2 3/ 2 3/ 2
2 2 2 1 1 1 1

( 1) 2 ( ) ( 1) ( ) ( 1) ( 1) ( )

( 1) ( ) ( ( 1) ( 1)) ( ( ) ( ))
in i in i

offtake offtake offtake offtake out i i out i i

y t y t y t ay t ay t c h t b c h t

c h t b c h t c y t p t c y t p t

τ τ

τ τ + + + +

+ − + − − − − = − − + − −

− − − − − − − − − −
 

              (36) 
 

Rearranging equation (36) and multiplying the constants the second order predictor without the 
correction factor for submerged flow is found to be 
 

3/ 2 3/ 2 3/ 2 3/ 2
1 1 2 1 3 2 4 2

3/ 2 3/ 2
5 1 1 6 1 1

( 1) ( ) ( 1) ( ) ( 1)

( ( ) ( )) ( ( 1) ( 1)) (2 ) ( ) ( 1) ( 1)
i i offtake offtake

i i i i

y t c h t c h t c h t c h t

c y t p t c y t p t a y t a y t

τ τ τ τ

+ + + +

+ = − + − − − − − − −

− − − − − − + − + − −
 

            (37) 

where 1 2,c c  are associated with the flow over gate 877A, 3 4,c c  with the flow over gate 880 and 

5 6,c c  with the flow over gate 919. The correction factor for the submerged flow is finally added 
to arrive at the second order predictor  
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The third order model was found in a similar way using  
 

1 2( ) ( ) ( ) ( ) ( )in outy t a y t a y t Q t Q t+ + = −        (39) 

 
The Euler approximation of the third derivative gave 
 

( ) ( 1) 3 ( ) 3 ( 1) ( 2)y t y t y t y t y t= + − + − − −        (40) 

 
and the third order predictor is 
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                      (41) 
 

1, 2, 3c c c  are associated with the flow over gate 877A, 4, 5, 6c c c with the flow over gate 880 and 

7, 8, 9c c c with the flow over gate 919.  

 

4.6 Experimental data 
Previous work has shown that good models can be obtained using system identification 
techniques based on collected data from systems operating in open loop. To perform an open 
loop experiment in the channel will however often cause deviations from normal operating 
conditions and are therefore rarely allowed. This leaves the alternative of performing the 
experiments in closed loop, causing only minor disruptions to the normal operations in the 
channel.40 It is important to be aware of the limitations of the system. In theory, the system does 
not have any limitations, but in reality the irrigation channel has limitations such as maximum 
water level in the channel. 
 
Data from two experiments performed in open loop and one experiment in closed loop were 
available for studying. The open loop data had been collected with the non-parametric method 
step test. In a step test the reference input is changed from one constant value to another constant 
value at one time instance. The purpose of the step test was primarily to find estimates of the time 
delays, time constants and the static gain. The data sets available from open loop conditions come 
from experiments carried out prior to this thesis work and were collected at two different times, 

                                                 
40 Ooi (2003) 
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the 28th to the 29th of September 2006 and the 2nd to the 3rd of October 2006. Both experiments 
gave around 30 hours of data but had different flow conditions. The flows in the channel during 
the experiment in September were in the range of 30 to 100 ML/day, where as the experiment in 
October had approximately 115 to 160 ML/day. The offtakes and flows to the secondary channel 
were small (between 5 and 30 ML/day) compared to the flow in the main channel.  The closed 
loop data was collected in November during 45 hours from the 28th to the 29th of November 2007 
with flows varying between 60 and 190 ML/day. 
 
The steps were performed when the system was in steady state. The gate to the offtake, 880, was 
held as constant as possible, though moved a couple of centimetres during the experiments. When 
an overshot gate position is lowered, the flow over the gate increases. This makes the upstream 
water level decrease, and if the downstream gate positions are constant, the down stream water 
level increases.  The water level upstream a gate will increase when a gate shuts, which will 
decrease the downstream water level.  This relationship is more complicated with a further gate at 
the offtake moving, which also affects the water levels.  
 
Since the experiments are performed during normal operations, that is, the channel is in use, the 
inputs were not allowed to be changed as much as would be wished for. Data was collected when 
877A performed with around 70% of its maximum flow, and 880 with around 40% of its 
maximum flow. The flow over gate 919 was very close to its maximum flow. All three gates 
were not installed at the same time and therefore the maximum flows do not match. The 
maximum flow of 880 + 919 should be less than the maximum flow of 877A, but does not need 
to be equal.  
 

4.6.1 Step test analysis 
It is practice to inspect the data before using them. An experienced engineer should have a good 
idea of the relationships between the length of the pool and its time constant, time delay and 
wave period and should be able to determine the quality of the data.  
 
The raw measurements of the variables of interest were collected with a non-uniform sampling 
interval. Matlab was used as a tool to examine the data and naturally all three data sets available 
were used. The raw data were first plotted and examined for outliers and then interpolated to get 
a uniform sampling of 1 minute. There were no outliers and virtually no difference in the plots of 
the raw data and the interpolated data, which was expected since the raw data was collected more 
frequently than every minute and from here on only the interpolated data will be used. Since there 
are three gates at 877A and two gates at 919 the positions of the gates at each site were controlled 
to make sure that they had the same values and really worked in parallel. It was found that the 
positions of the parallel gates only differ a few millimetres and a simplification was made so that 
the gate positions, at 877A and 919 respectively, could be considered to be exactly the same.  
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Figure 16: Plot of gate and upstream- and downstream water level from 877A in October 

 
Figure 16 shows the step test performed at the experiment in October. The step was performed 
when the downstream water level was in steady state, and the upstream water level was almost in 
steady state, at t=380 min. In steady state the inflow and outflow of a pool is equal. During the 
test the gate at the downstream gates 919 was held at a fixed position and the gates at 877A 
opened up, the position was lowered, from 8.94 to 8.63 mAHD which caused a step in the water 
level upstream of gate 919 shown in figure 17. The gate at offtake 880 was moving slightly, but 
the change in water flow was so low, that it will not have any significant impact on the step 
results. When the gates at 877A opens the upstream water level lowers since more water flows 
over the gate and the downstream water level experiences a step, a significant rise in water level.  
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Figure 17: Magnified plot of  gate 877A, upstream waterlevel of 880 and 919 at a step test 
performed in October 

 
The step from the experiment in October is magnified to show how the time delays from gate 
877A to gate 919, and gate 877A to gate 880 were found. The solid line is gate 877A which 
position is changed at t=370 min, creating a step. The dotted line is the upstream water level at 
gate 880, which starts the step at t=376 min. The dashed line represents the upstream water level 
at gate 919 and the water reaches this part of the channel at t=380 min, which indicates that the 
time delay from gate 877A to gate 919 is 10 min. The time delay from 877A to 880 was 6 
minutes and from this information the time delay from 880 to 919 was calculated to be 4 min. No 
waves could be observed in the step test.  
 
To calculate the time constant, the so called 5τ -method was used. This method is preferable to 
use when the experiments are fairly long. The time constant is calculated as the time it takes for 
the system to reach steady state divided by five. This is the preferable method to use when data is 
collected during a long time. From the step tests the time constant was found to be 124 min and 
98 min from the September data and October data respectively.  
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Figure 18: Plot of a step response showing upstream waterlevel of 919 together with a first order 
transfer function 

 
Figure 18 shows a step response experiment using the data set collected in September. The 
measured water level (solid line) is plotted together with the simulated water level (dotted line) 
for a first order transfer function. The measured data resembles a first order system, but the 
tendency to an “S –shape” in the step suggest a second order system. The first order transfer 
function used here was achieved through testing different values until a step response resembling 
the step response form the experiment was achieved. 



44 
 

400 500 600 700 800 900 1000 1100

0

0.02

0.04

0.06

0.08

0.1

 

 
October data

Time (sec)

W
at

er
 le

ve
l (

m
AH

D
)

upstream w ater level 919
step by transfer function

 
Figure 19: Plot of a step response showing upstream water level of 919 from the October data set 
together with a second order transfer function 

 
Figure 19 shows a step response experiment using the data set from October (solid line). The 
measured water level is plotted together with the simulated water level (dotted line) for a second 
order transfer function. Examining the step response from October one can see that it resembles 
the step response of a second order system very closely. This indicates that a second order model 
is needed to describe the data. The transfer function giving this step was found through testing 
different values for the variables in a standard second order transfer function, equation (29). 
 

2

2 22
n

n ns s
ω
ζω ω+ +

          (42) 

 
The damping ratio ζ  was found to be 0.7 through comparing the step response from the 
measured data with plots of step responses of second order systems. 
 

4.7 Parameter estimation 
The data available from the open loop system (September and October data) and the data from 
the closed loop system (November data) were used to estimate the unknown parameters using the 
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parameter estimation method least squares. An iterative search routine in Matlab was developed 
for the parameter estimation to find the minimum prediction error of the non-linear model. The 
optimization algorithm Levenberg-Marquardt algorithm (LMA), which provides a numerical 
solution to the problem of minimizing a function, generally nonlinear, over a space of parameters 
of the function, was used. The LMA interpolates between the Gauss-Newton algorithm (GNA) 
and the method of gradient descent. It is more robust than the GNA which means that in many 
cases it finds a solution even if it starts very far off the final minimum. On the other hand, for 
well-behaved functions and reasonable starting parameters, the LMA tends to be a bit slower than 
the GNA. 41 
 
The minima that were found by the LMA algorithm differed a lot depending on what initial 
values were used, which indicated that local minima, and not global minima, were found. Due to 
this problem a further search routine was developed in Matlab which aim was to find reasonable 
starting values for the parameters in the θ  vector to be used in the LMA algorithm. The search 
was performed with the data sets from the three different experiments resulting in three different 
θ  vectors containing different optimal values on the unknown parameters. 
 

The first order model, equation (19), has 3 unknown parameters, , ,in out offtakec c c  so in table 2, the vector 

has the parameters in the following order [ ]877 919 880, , T
Ac c cθ = . The estimated parameters, the 

ones which gave the smallest value in the prediction error method with quadratic criterion, from 
the first order model are given below. 
 

Table 2: Estimated parameters for the first order model using three different data sets 

0.0633
0.0397
0.0250

Sepθ
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

  
0.0978

0.0655
0.0341

Octθ
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

  
0.0707

0.0540
0.0185

Novθ
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 
As expected the parameter estimate of 877 Ac  is positive whereas 919c  and 880c  are negative, since 

877 Ac  is associated with inflow and 919c  and 880c  with outflow of the channel. As can be seen, the 
parameters in the θ  vectors differ between the experiments. It is natural that the estimated 
parameters vary between the data sets and the reason for this can be that the data is not 
informative enough. More important is that the ratio between the parameters in the θ  vector is 
fairly constant. Since the parameters are associated with the flow at each gate, it is only natural 
that the c values differ over the year, but the value of 919c  + 880c  should approximately add up to 
the value of 877 Ac , and this is also true in all three cases. 

 

                                                 
41 www.wikipedia.org 
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The hypothesis that a higher order model is needed to capture the dynamics in the channel 
including the tunnel and the results from the step tests motivates that a second and third order 
models are examined to see if they can further improve the results. The same process as for the 
first order model was undertaken and the iterative methods in Matlab were extended to find 
parameter estimations for higher order nonlinear models.  The second order model that was used, 
equation (27) has the following parameter vector 1, 2, 3, 4, 5, 6,

T
c c c c c c aθ ⎡ ⎤= ⎣ ⎦ which gave the following 

results for the second order model 
 
Table 3: Estimated parameters for the second order model using three different data sets  

0.129
0.209

0.399
0.183

0.0612
0.0640

1.000

Sepθ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥= ⎢ ⎥
⎢ ⎥−
⎢ ⎥
−⎢ ⎥
⎢ ⎥⎣ ⎦

  

0.669
0.779

0.675
0.600

0.438
0.403
0.994

Octθ

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥= ⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  

0.0642
0.0126

0.0605
0.0018
0.0359
0.0158

1.001

Novθ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥= −⎢ ⎥
⎢ ⎥−
⎢ ⎥
−⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
The results from the second order model shows parameters that differ more between the samples. 

1 2,c c  are associated with the flow over gate 877A and should added together have a positive 
value indicating flow into the system. 3 4,c c  are associated with the flow over gate 880 and should 
added together have a negative value indicating flow out of the system and the same is true for 

5 6,c c  which are associated with the flow over gate 919. All these are true for all three θ  vectors. 
In all θ  vectors a has received a value value very close to 1. This indicates that the term 
containing a in the equation (38) is not needed at all.  
 
The third order predictor, equation (41), with the unknown parameter vector 

1, 2, 3, 4, 5, 6, 7, 8, 9, 1 2,
T

c c c c c c c c c a aθ ⎡ ⎤= ⎣ ⎦  gave the following results  
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Table 4: Estimated parameters for the third order model using three different data sets 

0.125
0.204
2.25 14

0.397
0.186
0.00308

0.0627
0.0647
2.38 4

1.000
0.999

Sep

e

e

θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥−
⎢ ⎥
−⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

   

4.48 7
6.09 7
0.109

0.224
0.0274

0.178
0.168
0.0102

0.142
1.00
0.997

Oct

e
e

θ

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥

= ⎢ ⎥
⎢ ⎥−
⎢ ⎥
−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

   

6.87 12
0.00400
0.0628

0.0840
0.0187

0.0514
0.105
0.00553

0.0939
1.000
0.999

Nov

e

θ

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥

= ⎢ ⎥
⎢ ⎥−
⎢ ⎥
−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

1, 2, 3c c c  are associated with the flow over gate 877A and should added together be positive, 

4, 5, 6c c c  are associated with the flow over gate 880 and should added together be negative and 

7, 8, 9c c c  are associated with the flow over gate 919 and should added together be negative. This is 
true also for the third order model. The values for a1 and a2 are all 1 or very close to 1, which also 
here indicates that a too high model order is being used.  
 

4.8 Model validation 
A validation method called cross validation was used because it is the best method to evaluate the 
different models average prediction error when confronted with new data sets42. The model that 
has the best capability of predicting a new data set should be considered the best model. Data set 
from September was collected under reasonably low flow and data set from October under 
reasonably high flow. The data set from November was collected under closed loop conditions 
using a controller. As mentioned when discussing the experiment design, using data sets collected 
under different flow conditions can give a better hint about what flow conditions the model is 
valid for, and hence serves as a quality measure of the model.  
 
Since the three different parameter estimates have been used, three different models are obtained. 
With the cross validation method all data sets available can be used for model estimation and 
then cross validating these against each other, the model which best can predict the other two data 
sets can be found. Table 5 shows the squared averaged prediction errors from the first order 
model. 
 

                                                 
42 Glad, Ljung (2004)  
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Table 5: Squared average prediction error of the first order model using different data sets and 
different parameters  

First order model September parameters October parameters November parameters 

September data  3.1518*10-5 2.1687*10-4 

October data 1.5915*10-4  2.1314*10-4 

November data 0.0010 4.8982*10-4  
 

The cross validation method gave similar results for all data sets, which is a good indication of 
the accuracy of the estimated parameters. Worth to be noted is that the parameters from 
November were able to predict the two other data sets equally well whereas the parameters from 
September and October did not predict the November data set well. Furthermore, the parameter 
vector θ  from November is based on data collected during 45 hours whereas the parameters from 
September and October are based on data sets collected during approximately 30 hours. As 
mentioned before, the longer and the more varied the experiment, the more accurate will the 
estimated parameters be. Therefore, the choice was made to use the θ  vector from November as 
an approximate of the unknown parameters in the control design process. 
 
The simulated water level was calculated using a one step ahead predictor based on the estimates 
from the OE model. The OE model uses the input and the predicted water level from time t to 
predict the water level of time t+1. The predictor also used the correction factor for submerged 
water level.   
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Figure 20: Plot of measured and simulated water levels using a first order predictor with 
correction factor for submerged flow and parameters from October and November data sets 

 
Figure 20 shows how well the water level can be predicted using a first order nonlinear OE 
predictor with correction factor for submerged flow and the estimated parameters from October 
and November to predict the water level in September. The dashed line is the measured data from 
September plotted. The solid line is the predicted water level based on estimated parameters form 
October plotted and the dotted line is the predicted water level based on estimated parameters 
from November. The graph clearly shows that the parameters from October can better describe 
the September data than the parameters from November, predicting the water level only 1 cm 
away from the measured water level. The November parameters, although not as accurate as the 
October parameters in this case, can predict the water level with less than 2.5 cm error margin. 
Both parameter sets give very satisfying results.  
 
Similar results are achieved using the September and October parameters on the November data 
set, and the September and November parameters on the October data set. Over all, the water 
level predictions are within 3 cm of the measured water level, and no prediction is further than 5 
cm away at any time during the prediction period.  
 
Table 6 gives the squared average prediction error of the second order model 
 



50 
 

Table 6: Squared average prediction error of the second order system using different data sets and 
different parameters 

Second order model September parameters October parameters November parameters 

September data  5.7806*10-5 2.1987*10-4 

October data 1.6634*10-4  2.1059*10-4 

November data 1.0525*10-3 6.305*10-4  
 

Table 7 gives the squared average prediction error of the third order model 
 
Table 7: Squared average prediction error of the third order model using different data sets and 
different parameters 

Third order model September parameters October parameters November parameters 

September data  3.7071*10-5 2.3116*10-4 

October data 1.629*10-4  2.1055*10-4 

November data 1.1481*10-3 5.3854*10-4  
 

As the averaged square error indicates, the higher order models only improve the result slightly. 
In some instances the squared averaged prediction error even indicates that the prediction error 
grows with a higher order model. This is however not interpreted as that the higher model can 
describe the dynamics worse, but only that the parameters that were used were apparently not the 
ones that give the global minimum.  
 
One of the basic principles in system identification is to keep the models as simple as possible 
and improved results need to be weighed against the greater complexity in the model. Therefore 
the improvements obtained with the second and third order models are not considered significant 
enough to imply a higher model order use. 
 
The three data sets were also tested in a model without the correction factor for the submerged 
condition to make sure that this condition does improve the results. The average squared 
prediction errors showed clearly that the model with the correction factor for the submerged 
condition captured the dynamics in the pools better than the model without this condition. 
 
The model of the system does not have to be an exact recreation of the true system. The aim of 
the model is for it to be accurate enough to give the user an idea of how the true system works 
with changing inputs and disturbances so that the controller can be designed and tested in a 
realistic way. 
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5 Controller design 
This chapter describes how the controller was designed. A controller needs to be tested along the 
design process to make sure that the results are acceptable. It can be hard to make experiments on 
the true system and therefore the controller is often tested on a model of the system. Using 
frequency response techniques the work included testing many different parameters and 
simulating the results in Simulink. As in the previous chapter I find it more fruitful to discuss the 
results of the simulations straight away. 
 

5.1 Controller objectives 
The irrigation channel must be able to supply the farms along the channel with water. The main 
objectives of the controller can be summarised in three points. 
 
1. Offtake disturbance rejection 

The main disturbances are the scheduled and unscheduled offtakes (delivery of water) to 
farms and secondary channels. These load disturbances must be rejected.  
 

2. Water level setpoint tracking  
 As the transport of water is powered by gravity, it is important to keep the water levels above 
certain supply levels in order to ensure the timely delivery of water to farms and secondary 
channels. Most offtakes are located at the downstream end of a pool and therefore it is 
important to keep the water level immediately upstream of the gates on setpoint which is the 
desired water level.  
 

3. Limited excitation of waves  
Gate movements can induce large waves in the pools which are undesired since it causes 
fluctuations in the flows at the offtake points and damage to the channel banks. Gate 
movements in the frequency range of the standing wave should therefore be avoided.  

 

5.2 The system 
The equation (23) for the first order model developed in chapter 4 can be rewritten as  
 

3/ 2 3/ 2
919 877 877 919 919( ) ( 10) ( ) ( )A Ay t c h t c h t d t= − − −       (43) 

 

Substituting 3/ 2( )u t h=  we arrive at 

 

919 877 877 919 919( ) ( 10) ( ) ( )A Ay t c u t c u t d t= − − −        (44) 
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which Laplace transform is 
 

10
919 877 877 919 919( ) s

A AsY s c u e c u d−= − −        (45) 

 
and ignoring the disturbance the system with input and output can be written as the transfer 
function 
 

10877
919 ( ) ( )sAcY s e U s

s
−=           (46) 

 
which means that an integrator with time delay model should be used for control design.  
 

5.3 Feedback control 
A decentralised controller in an open water channel has the same number of feedback controllers 
as the number of pools to be controlled and they should make sure that the water level is at 
setpoint. The most suitable decentralised controller configuration for demand driven irrigation 
channels is the distant downstream control. In this type of control the flow over a gate at the 
upstream end of each pool is calculated using information communicated from the corresponding 
downstream gate as can be seen in figure 21. 
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Figure 21: Diagram showing feedback control in the irrigation channel 

 

Controller iC  is designed to control the water level of pool i , which is downstream of gate i , 
while 1iC + controls the water level in pool 1i + . The control action at gate i  is determined on the 
basis of the local water level setpoint ir  and the measured water level iy , which is communicated 
from gate 1i + . The controller iC  can transform the input information to a value ui, from which 
the gate decides its position in order to get the right head over gate.  
 
A decentralised control structure warrants consideration of how water level errors propagate 
through the system. Controlling the flow over the upstream gate results in the effect of any water 
level propagating to the upstream pools. That is, an offtake in a pool results in control action to 
increase the inflow to the pool for setpoint tracking. Since inflow to one pool means outflow from 
the upstream pool, a water level error occurs in the upstream pool, which triggers a new control 
action and so on along the string of pools. This is the reason for the importance of water level 
setpoint tracking.  
 
With the control objectives in mind the control design started off with designing a feedback 
controller to see how well it could perform. A proportional controller will help the system stay on 
setpoint. As one of the main tasks of the controller is to reject load disturbances, integral action is 
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required. Adding a derivative control will increase the gain at a frequency where a low frequency 
is preferred, and therefore the derivative control is left out. The PI controller provides enough 
phase margin as it is without the derivative control.  
 
Open water channels are not designed to cope with waves, so the wave dynamics should not be 
excited. Even though no waves could be observed from the step test, experience has shown that 
they are often present in the channel.  Waves are also undesirable since they lead to fluctuations 
in the flow at offtake points onto farms and secondary channels. The waves are multiple of each 
other and the lowest frequency is usually the dominant one. In order to suppress the waves in the 
channel a lowpass filter is introduced so that the controller has a low gain at the wave frequency. 
This combination of proportional and integral action together with a low pass filter can fulfil the 
control objective; to keep water level at setpoint, reject load disturbances due to offtakes and 
suppress waves.  
 

(1 )
( )

(1 )
p i

i f

K K s
C s

K s T s
+

=
+

          (47) 

 
The feedback controller has proportional action + integral action + first order low pass filter. 
 

5.3.1 Tuning of the PI controller 
The controller was tuned using frequency response techniques43. In the tuning, equation (30) was 
used as the process model with 877 Ac . The design process starts with ensuring stability and 
robustness for the local pool dynamics. The design specifications in this case were a phase 
margin of at least 45˚ and a gain margin of at least 6 dB. Since no waves were found in the 
channel the wave frequency had to be estimated as 2π(1/wave period) where the wave period is 
approximately 3 times the time delay. Robust stability and performance is assured with a 
maximum controller gain at the wave frequency of –10 dB. The design criteria were met using 
Bode plots as representation of the system when performing frequency response methods. Subject 
to the design specifications the bandwidth needs to be as high as possible to give a fast response.  
 
After the initial design specifications had been satisfied the tuning of the controller starts. This is 
a time consuming task where many different solutions are possible. They were all tested using 
simple simulations where a step is made and disturbance is added to see how the controller 
responds to setpoint changes and disturbances. Based on the simulation results the control 
parameters were fine-tuned. 
 
It is important to get an understanding of how reliable the model is. This can be done by 
performing simulation experiments with the model. Figure 22 is a simulation test of an input step 
                                                 
43 Franklin, Powell, Emanmi-Naeini (2006) 
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from 9.4 to 9.5 at t=200 min. and a disturbance of 20 ML/day at t=1000 min using the parameter 
values from the November experiment. 
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Figure 22: Simple simulation of feedback controller with step at t=200 and disturbance at t=1000 

 
This simulation was compared to other simulations using different parameters, time delays, steps 
and disturbances. Most important is that the simulated water level should have fast responses and 
not have deviations from setpoint greater than 5 cm. This particular controller was selected based 
on these criteria and that it further satisfied the other design parameters required, based on gain 
margin, phase margin and the controller gain. The controller giving this step response had the 
parameter values pK =0.55, iK =125 and fT =5, which gives the controller transfer function 

 

2

68.75 +0.55( )
625 125

sC s
s s

=
+

          (48) 

 
The closed loop system gives satisfactory responses. The water levels recover smoothly from 
disturbances without large deviations from setpoint and without inducing excessive wave 
motions. Even greater variations, i.e. an input step from 9.4 to 9.5 and a disturbance of 50 
ML/day was tested, and the results were considered good.  
 
The controller should be tested under more realistic circumstances including saturating control 
signals, which should be included in the simulation experiments.44 Therefore the simulation 
model was further developed to test the controller under the practical limitations in the system. In 
order to reduce the wear and tear of the gates, a 0.015 m dead-band on the gate position 
movements was used. That is, if the calculated new position of the gate is less than 0.015 m away 
                                                 
44 Glad, Ljung (2000) 
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from the current position, the gate should not move. The simulation model was also extended to 
include the outflow of the water through both gate 880 and gate 919. Below are the simulation 
results using a feedback controller. The setpoint was changed at t=500 min from 9.4 to 9.45 
mAHD. The system experiences a disturbance, an offtake at t=1000 min of 0.1 ML and the water 
level at gate 919 was stepped from 0.2 to 0.4 ML at t=1500 min. 
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Figure 23: Simulation of feedback controller with reference signal and output signal with step at 
t=500 and step at t=1000 and t=1500 

 
Figure 23 shows that due to the more realistic circumstances, including the disturbances in 
model, which makes the simulated water level oscillate more than the previous simulation result 
from the simplified model in figure 22. The oscillations are mainly due to the disturbances from 
the offtake which can be seen at t=1000 min.  
 

5.4 Feedforward control 
The result from the simulation with a feedback controller is not satisfying. The water level 
oscillates a lot and when the disturbance comes in the water level is 17 cm off setpoint. Since 
there are available measurements of the disturbance it should be incorporated into the model and 
used in a feedforward controller. The information about the disturbance in a downstream pool is 
then transmitted upstream faster and reduces the dynamic influence on the upstream pool. The 
model was further extended to incorporate also a feedforward loop and new simulations were 
performed. 
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Figure 24: Block diagram showing feedforward control in the irrigation channel 

 
The FF block in figure 24 includes the whole feedforward controller.  
 

( )i i+1 i+1u (s)=C(s) (s)-y (s)r  
        

(49) 

 

3/ 2 3/ 21
i , 1( ) ( ) ( ) ( ) ( )i

i ff i i i i
i

ch s u s K h s u s FF s
c
+

+= + = +       (50) 

 
The gain ffK is introduced to avoid large overshoots since the feedforward path cannot 
compensate for the time delay, and the gain is hence detuned from unity to 0.75 in order to avoid 
large overshoots in the water level responses.  When the controller was designed with feedback 
and feedforward, both the disturbance from the offtake, and the flow out through gate 919, which 
in the system also can be considered as a disturbance, was used in the feedforward controller. The 
model was simulated using different water levels, disturbances and a variety of estimated 
parameters to make sure that the controller structure works in many different situations.  
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Figure 25:Simulation of feedback and feedforward controller with reference signal and output 
signal with step at t=500 and step at t=1000 and t=1500 

 
The simulation result in figure 25 illustrates the improved controller performance with 
feedforward action. Both the disturbance from the offtake and the flow out, through gate 919 
were included in the feedforward controller. Even with the disturbances the system now stays 
within 5 cm from setpoint. In this simulation the step and the disturbances were the same as in the 
feedback simulation to make it easier to see the improvements from figure 23.  
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6 Conclusion 
Water has in the last few years become a hot topic in Australia, due to the increased demand, and 
the decreased availability. Everyone is affected by the water restrictions, but especially the 
farmers are experiencing an increasingly difficult situation when not enough water can be 
delivered to them. The huge amounts of water lost in the networks of irrigation channels can be 
reduced significantly with better control systems. Much research has been done to develop 
models and design controllers for irrigation channels. The results presented in this report are a 
further contribution to the knowledge of the systems.  
 
The aim of this thesis was to find a model which describes the dynamics in the system and to 
design a controller which can regulate the flow in the irrigation channel. Starting with the 
modelling part, the main result in this report is that the pool from gate 877A to 919, including the 
Boisdale tunnel, can be accurately modelled with a first order non-linear equation. This result is 
somewhat surprising since the step tests from the open loop experiments indicated that at least a 
second order system was needed. The hypothesis that a higher order model was needed to model 
the flow from gate 877 to 919 was based on another infrastructure than the one that is currently in 
use in the channel and is therefore not valid anymore. The implementation of gate 877A close to 
the inlet of the Boisdale tunnel has clearly changed the former flow conditions.  
 
The OE predictors of the first, second and third order all gave satisfactorily results but since the 
differences between them were small, there are more advantages to use a first order model. The 
first order OE predictor presented is able to capture the relevant dynamics in the irrigation 
channel and can predict the water level for 45 hours satisfactorily. The simulated water level was 
further improved when the correction factor for the submerged flow was added to the model. The 
model is also fairly robust since it can handle different parameter values and disturbances. The 
models are very simple and therefore ideally suited for control design. 
 
Now focusing on the controller, by studying the simulation results presented it is clear that using 
only feedback to control the water level, the simulated water level oscillates around 3 cm off 
setpoint when there is no disturbance in the system. When the disturbance is added however, the 
system has obvious difficulties to keep the water level at setpoint, and it oscillates up to 17 cm off 
setpoint. When feedforward action is added to the controller, using both the disturbance caused 
by the offtake and the flow out over 919, the results are much improved in terms of response 
times and deviations from setpoints. The water level is now only oscillating around 2.5 cm off 
setpoint. Even at the instance when the disturbance is added, the maximum water level error is 
around 5 cm, which is considered very good since deviations of less than 10 cm are usually 
accepted. Note that these are simulations and the models only have access to the water level 
setpoint and the disturbances in the pools.  
 
Due to the dead-band the water levels do not settle exactly on setpoints but this is a small 
problem in the matter. The greater oscillations are due to the disturbances in the system. As has 
been shown, the effect of the disturbance can be reduced if data from the offtakes are available. 
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This requires a gate to be implemented at the offtake and since gates are expensive, this is not 
always possible.  
 
Rubicon Systems, which is responsible for the management of the gates considered in this report, 
are interested in using the results presented here to implement the controller in the channel and 
test its performance under “real” circumstances. 
 
The results presented demonstrate that using system identification methods and control 
techniques on irrigation channels, the performance can improve significantly. This leads to large 
environmental benefits while still maintaining the same level of service to farmers. The economic 
benefits of better control of the irrigation channels can come from the lower operating costs, but 
most importantly, from less water wastage.  
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